
Spatial Attention Based Grid Representation
Learning For Predicting Origin–Destination Flow

Mingfei Cai
Department of Civil Engineering

The University of Tokyo
Meguro, Tokyo, Japan
mfcai@iis.u-tokyo.ac.jp

Yanbo Pang
Center for Spatial Information Science

The University of Tokyo
Meguro, Tokyo, Japan

pybdtc@csis.u-tokyo.ac.jp

Yoshihide Sekimoto
Center for Spatial Information Science

The University of Tokyo
Meguro, Tokyo, Japan

sekimoto@csis.u-tokyo.ac.jp

Abstract—Origin–destination (OD) flow data are critical for
urban planning and traffic system design. Such data are suitable
for describing movement at the macroscopic level. However,
collecting them on a large scale, such as in a city, is challenging.
Their form incompatibility makes using them for other tasks
difficult. Therefore, we propose a deep model to learn meaningful
OD information on grids within a city to address these problems.
We collected multimodal characteristics of regions, such as
road network densities and facility distributions, from several
open-source datasets and used them as grid signals. We then
constructed a spatial attention-based deep graph network to
generate grid embeddings and used them to predict the OD
volumes. The proposed method was evaluated against a set of
baseline approaches using a real-world dataset in Japan. The
analysis indicated that our model can extract more accurate
latent topographical information from OD graphs and produce
reasonable grid embeddings; these representations apply to other
downstream tasks.

Index Terms—OD flow, graph attention network, grid embed-
ding

I. INTRODUCTION

The estimation of people flow is essential for urban plan-
ning. The government can allocate resources to specific areas
such that more people can benefit from this arrangement.
There are numerous types of information to describe people
flow, and the origin–destination (OD) matrix is an aggregated
data form that can depict the phenomenon of the crowd [1]. It
can uncover the trend of massive movement on a large scale
compared with other data, such as individual trajectories. How-
ever, collecting OD volume data within a large scope is not
trivial, regardless of whether traditional censuses or telecom
records are used [2]. Creating a prediction model that can
generate OD matrices based on the indicators of the accessible
auxiliary region is advantageous. Many methodologies have
been proposed to predict OD matrices. Given that the road
network naturally maintains a topological structure, graph rep-
resentation learning has recently gained popularity as a method
for estimating urban flow. Implicit geometrical information
can be effectively implemented by modeling the network as a
relational structure and using graph convolutions to represent
complicated interactions. Graph learning can reflect urban
components as dense embeddings and conduct a similarity
analysis between them. Such a representation is significant for

learning the semantics of urban areas and applying the model
to various cities. Therefore, the construction of OD graphs
with the by-product of region embeddings is an appropriate
way to describe the urban flow and municipal functions.

However, generating accurate OD graphs is difficult. First,
the structure of an OD graph is implicit and can be defined in
different ways. Most studies use a geographical graph, which
means that neighboring regions on the map are connected by
an edge. This design neglects trips covering large distances
because long-distance trips require messages passing through
numerous hops, which is also equal to the number of the
convolutional layers. Some studies have considered the con-
cept of semantic neighbors, which means that two regions are
connected if there are OD flows between them. Such settings
can leverage data-driven knowledge and consider complex
urban movement patterns. However, geographic patterns are
disregarded, which results in the loss of network information.
In this study, we propose a spatial attention-based graph con-
struction. First, we construct a graph structure from historical
OD data. Furthermore, we incorporate spatial patterns into
the attention mechanism so that the network can elucidate
the relationship between different areas on both the spatio-
structural and semantic sides.

Second, OD volume prediction is more difficult than tasks
such as traffic speed prediction. Predicting a general OD flow
with multiple modes of transportation is more difficult than
it is with a single mode, such as a taxi or subway. The
distribution of the data tends to be unbalanced, which means
that extreme values are more common. Some OD pairs may
have a considerable traffic volume, whereas others may have
no volume. Consequently, a simple model structure cannot
provide accurate predictions for several cities simultaneously.
Additionally, given the same OD pair, the bidirectional people
flow diversifies significantly. All aforementioned cases lead to
the need for a more powerful model to achieve the purpose of
OD volume prediction.

Consequently, traditional regression approaches cannot ad-
dress the complicated latent relationship between regional
indicators and OD flows. The implicit spatial structure even
entangles clues for the model construction. Thus, we propose
a graph convolutional model to learn OD semantics over a
city. Figure 1 provides an overview of the model structure.978-1-6654-8045-1/22/$31.00 ©2022 IEEE
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Fig. 1: Overview of this study.

Our approach relies on graph attention networks (GAT) and
integrates the spatial features among areas. GAT is a spatial-
based approach; hence, dealing with dynamic structures and
new graphs to achieve application in other target areas is
facile. We constructed a graph employing the units of the grid.
The GAT performs as an encoder model and outputs a dense
embedding for each grid. The origin and destination grids are
encoded to create edge representations. We used a multilayer
perceptron as the decoder to calculate the volume of the OD
pairs. Our proposed model can extract information from open-
source data to illustrate the combination flow from different
transportation sources considering multimodal people flow.

Furthermore, the aim of this study is not limited to the
accurate prediction of OD volume. Another initiative is to
use generated location representations. We conducted two
downstream tasks, namely cross-city similar areas extraction
[3] and land utility classification [4], to elucidate embeddings
containing valuable OD semantics that can be used in other
related urban tasks.

The main contributions of our work are as follows:
• We designed a deep graph-learning model to reconstruct

the OD matrices. The model can simultaneously consider
OD semantics for historical data and geographical struc-
tures to build OD graphs for effective message passing.

• We used multiple public census data as grid indicators
to learn a set of meaningful embedding containing OD
volume information.

• We designed two downstream urban tasks to validate the
usage of generated location representations.

Extensive experiments in six Japanese cities with different
attributes showed that the proposed model can achieve satisfac-
tory performance. The remainder of this paper is organized as
follows. Section II derives definitions of key concepts and the
problem formulation. Section III introduces the methodology.
Section IV provides the experimental details as well as the
results and discussion. Section V reviews the literature. Section
VI concludes the paper and discusses future work.

II. PRELIMINARY

In this section, we first present the definitions of the key
concepts related to our model. Then, we provide the problem
formulation. In this study, we considered the unit of the mesh
grid.

Definition 1 (Mesh grid). The target region is divided into
N subareas of equal size (e.g., 500m × 500m), denoted by
M = {m1,m2, . . . ,mN}. Figure 3 shows the mesh grid
division in Fuji City, Shizuoka Prefecture. Each grid has a code
calculated from the longitude and latitude of its central point.
We adopted a division approach from the Statistics Bureau of
Japan [5].

Definition 2 (Urban indicators). Each mesh grid has unique
characteristics that can be summarized using multisource infor-
mation. The matrix U ∈ RN×D describes the D dimensional
attributes of the mesh grids, which we refer to as the urban
indicator. The source of indicators includes several aggregated
open data, such as facility distributions and night population.

OD matrices efficiently determine macroscopic human mo-
bility. Use of such data avoids the leakage of private informa-
tion and enables a grasp of the overall knowledge of people
flow of population on a large scale.

Definition 3 (OD matrix). The OD matrix is a data format
used to describe the flow of massive numbers of people. In the
OD matrix A ∈ RN×N , the row denotes the origin, and the
column denotes the destination. The origin and destination are
represented by mesh grids in the aforementioned definition.
The value of each cell Ai,j indicates the number of people
who travel from the origin mi to the destination mj .

We can construct OD graphs from OD matrices to simulta-
neously consider the semantics of the regions and topological
structure information.

Definition 4 (OD graph). Given an OD matrix A, the
OD graph is formulated as a directed graph G = (V,E),
where V = {v1, v2, . . . , vN |M,U} represents the vertex, and
E = {ei,j |Ai,j > 0} is the edge connecting two vertices. We
can generate meaningful grid embeddings using OD graphs
to obtain multisource information for diversified downstream
tasks.

Definition 5 (Grid embedding). Given an OD graph G, the
grid embedding learns a function F : vi → Rd that maps the
urban indicator to the low-dimensional representation of each
grid, where d is the dimension of the grid embedding.

A. Problem Formulation

We investigated the OD volume prediction as a link regres-
sion problem. The goal is to learn the mesh grid embedding
F from the OD graph G, given the mesh grid of target area
M with urban indicators U . The model then predicts the
values of all cells in OD matrix A using the abovementioned
embeddings.

Note that the OD matrix is asymmetric, which means
that |Ai,j | ̸= |Aj,i|, and the edge representation from grid
embeddings needs to be order-sensitive for the start and end
areas. Therefore, we concatenate the origin and destination
embeddings to generate an edge vector,

ei,j = hi ⊕ hj (1)

Then, the edge representation will be regressed to calculate
the final OD flow value Ai,j .



(a) Aoi Ward, Shizuoka City (b) Suruga Ward, Shizuoka City (c) Naka Ward, Hamamatsu City

(d) Fuji City (e) Numazu City (f) Susono City

Fig. 2: OD graph of six target areas. We performed the experiment in Shizuoka Prefecture, located in central Japan. We
selected six areas with different characteristics. Aoi Ward, Suruga Ward, and Naka Ward are typical city areas of relatively
large, medium, and small size. Similarly, Fuji City, Numazu City, and Susono City are local areas of different sizes.

Fig. 3: The 500m grid system in Fuji City, Shizuoka Prefec-
ture. The target city area is divided into 500m×500m squares.
Each square is called a grid and assigned a code calculating
from the central point of this grid.

III. METHODOLOGY

In this section, we provide the details of the proposed
framework. Our motivation was to leverage multisource open
data to describe grids and train a model to grasp meaningful
embeddings from the original urban signals.

A. GAT Encoder–Decoder Framework

We maintained an encoder–decoder framework for OD
volume prediction. All the parts were trained jointly to learn
the parameters in an end-to-end manner. Algorithm 1 shows
the proposed framework for the OD graph construction.

1) Generation of Message: Each grid was initialized with
a descriptive signal vector, as mentioned in Section II. This
vector concatenates several numerical grid attributes from
different open-source census data. The range of data varies
significantly owing to the multiple data sources. Thus, we first
normalized the indicator to be in a Gaussian distribution across
each indicator category to deal with multisource data.

x̄ =
x− µ

σ
(2)

where µ is the mean and σ is the standard deviation of data.
The normalized signal vector is then passed into a pre-

message layer to generate the initial message. The pre-message
layer is a simple multilayer perceptron (MLP).

2) Generation of Grid Embedding: The GAT-encoder uti-
lizes the initial message to generate the mesh-grid embeddings.
The encoder considers both mesh grid semantics and spatial
structural information to construct an OD graph using the
attention mechanism. We adopted GATv2 for the convolutional
layers, as proposed by [6], to enable a dynamic attention
mechanism. The attended nodes are conditioned by the query



nodes such that every node can consider any other node when
calculating attention weights compared with the original GAT.
The attention weight was calculated as follows:

αi,j =
exp(aTLeakyReLU(Θ[xi∥xj∥ei,j]))∑

k∈N (i)∪{i} exp(a
TLeakyReLU(Θ[xi∥xk∥ei,k]))

(3)
We combined the initial message of the target node and

its neighboring nodes for the mesh grid semantics part. Con-
versely, we used the inverse of the distance between center
points for two mesh grids to reflect the geographic structure
regarding the spatial structure information. As we adopted
the grid system for the division of areas, such a setting
was effective for the inclusion of geographical characteristics.
These two parts were concatenated and passed through linear
and nonlinear transformations.

After calculating the attention weight, the message for the
node vi can be computed as

x′
i = αi,iΘxi +

∑
αi,jΘxj (4)

Moreover, residual blocks were added across the convolu-
tional layers to increase the expressive ability of the network.
Skipping connections between different layers can alleviate the
over-smoothing problems. Deeper graph convolutional models
tend to be poorer at differentiating nodes. All messages be-
come the same so that the model loses the ability to make accu-
rate predictions, known as over-smoothing problems. Adding
skip connections can underscore the impact of earlier layers
to solve this problem. It is also reasonable to consider the
background of the OD volume prediction problems for others.
Commonly, trips covering a long distance consist of several
sub-trips that generate an OD sequence. It is essential to
elaborate on the relationship between the initial origin and the
last destination for a better understanding of the trip, rather
than emphasizing the stay points in the middle. The residual
blocks can build a direct connection between two mesh grids
that are far from each other to overcome the limitations of the
local neighborhood.

Note that we did not separately train the inflow and out-
flow embeddings. We used only two different linear layers
to interpret the mesh grid embeddings as the origin and
destination reflections. This is because the inflow and outflow
are correlated rather than independent. Furthermore, different
embedding layers for inflow and outflow hamper the usage
of generated representations in other tasks. Therefore, the
model produces a general mesh grid vector for the inward
and outward OD flows.

3) Generation of OD Volume: The decoder calculates the
volume of people flow for OD pairs from the mesh grid
embeddings. The origin and destination embeddings were
concatenated to create edge representations after generating
the grid embeddings. The edge representations were passed
into the post-message layers to calculate the flow volume of
OD pairs. The post-message layer was a two-layer MLP, which
was the same as the pre-message layer.

B. Training

OD data can have a severely skewed distribution as we deal
with the general OD volume prediction, which considers all
transportation modes. We implemented a regression version
of the focal loss adapted by [7] to tackle the unbalanced data
distribution problem. The focal L1 loss function assigns larger
weights to the more difficult data points.

L =
1

n

∑
i

σ(|βei|γ)ei (5)

where n denotes the number of edges. β and γ are the
hyperparameters. ei is the difference between the prediction
and the ground-truth labels of edge i, and σ(·) is the sigmoid
function.

We split the entire graph into training, validation, and test
datasets. First, the proposed model was trained to generate an
embedding for each grid in the training dataset. The model
learns the transformation function from the initial grid indica-
tors to the grid embeddings. The same aggregation parameters
were shared for all nodes to ensure inductive capability. The
learned shared weight can be used to deal with indicators in
the same form from the validation and test datasets.

Algorithm 1: Generation of OD graphs
Input: Historical OD Lists, Region Indicators
Output: OD Volume Matrices, Region Embeddings

1 Nnode ← number of nodes(grids)
2 Nedge ← number of edges(OD pairs)
3 initialize the graph G
4 for i in 1 : Nedge do
5 add the edge Ei to the graph G
6 set OD volume of Ei to 0

7 for i in 1 : Nnode do
8 initialize urban indicators ui

9 pre-message layer: generate the message x′

10 while L ≥ threshold do
11 GAT message passing
12 generate mesh grid embeddings F
13 for i in 1 : Nedge do
14 calculate the edge vector ei
15 post-message layer: calculate OD volume A
16 calculate the loss L
17 go to 10

C. Downstream Tasks

Embeddings are often used in diverse downstream tasks. We
utilized trained embeddings in two urban downstream tasks:
region similarity calculation and land utility prediction, to test
the usage of our proposed grid embeddings.

1) Region Similarity Analysis: Embeddings are represen-
tations of low dimensions for complex semantics with high
dimensions. Thus, the generated grid embeddings maintained



spatial attributes in their spaces. This property can be used
to compare the similarities between different grids in different
areas. This will help us understand the essence of grid function
distribution, regardless of diversified urban layouts. In practice,
we selected one typical grid in one region and calculated the
similarity with all grids in the other city.

Specifically, we used the cosine similarity to illustrate the
closeness of the two grids. The range of the similarity is
[−1, 1], where a higher value indicates higher similarity.

S⟨a, b⟩ = a · b
∥a∥ · ∥b∥

(6)

2) Land Utility Classification: Land utility classification is
another appropriate downstream task of mesh grid embeddings
for the OD volume. The functionality of the mesh grid
determines the purpose of the travel, which is reflected in
the OD volume distribution map. For instance, for residential
areas, the outward OD flow on weekdays tends to be large
in the morning and small in the evening, which matches the
patterns of commuting trips. Thus, land utility classification
using mesh grid embeddings can validate the accuracy of the
proposed model. We directly applied k-means clustering to
the generated embeddings and compared the clustering results
with the ground-truth data.

IV. EXPERIMENTS

In this section, we present the details of the experiment,
including the datasets used, experimental settings, and baseline
models.

A. Dataset

In this subsection, we present the details of the datasets
used in the experiment. The datasets consist of the OD volume
dataset from SoftBank Group Corporation and urban indicator
datasets from multiple open-source censuses.

1) OD Volume: We used National Move Statistics as the
OD volumes source data, provided by SoftBank Corporation,
one of the biggest telecom companies in Japan. The Soft-
Bank Corporation aggregates location-based service data from
mobile base stations in Japan. The raw data are upsampled
to cover the entire population rather than just the SoftBank
mobile users. The data resolution was 500m, the same as the
previous definition in Section II. Each row of data indicates
the volume of OD flow for one specific OD pair within a day.
Additionally, the number of OD flows that are less than the
threshold is hidden to protect privacy. We utilized data within
one week (October 13–19, 2019) for the ground-truth labels
of the predictions.

2) Grid Indicators: The key to achieving a good model
performance is the use effective features for nodes in graphs.
We leveraged multisource features and collected data from
several open datasets [8] [9] [10] [11]. Table II provides a
summary of the grid indicators used in this study.

First, the night population [10] indicates the number of res-
idents in the grid. Intuitively, numerous OD flows come from
people living in the area. Thus, the night population indicator

has a strong relationship with the OD flow volume. Second,
the density of a road network implies traffic convenience. The
more convenient the road network, the larger is the people
flow of the grid. We combined some categories in the original
road density dataset to obtain a more compact signal vector
to improve efficiency. Third, annual passengers of the railway
station can provide information on long trips, as the railway
connects two grids over a long distance. We used the passenger
number of railway stations in 2020, offered by Ministry of
Land, Infrastructure, Transport and Tourism (MLIT), Japan.
The number of passengers was added if there were several
stations in one grid. The number was divided equally and
shared with each grid if one station covered several grids.
Furthermore, the distribution of the point of interest (POI)
was used to illustrate grid attraction. The data comprised 40
categories. This indicator includes the number of specific types
of POI as well as employees and assigns different signals for
trips for different purposes.

B. Experimental Setup

In this subsection, we provide the settings for conducting
different experiments with the baseline and proposed models
used for comparison.

We performed an experiment in Shizuoka Prefecture, which
is located in central Japan. We selected six areas with different
characteristics: Aoi Ward in Shizuoka City, Suruga Ward in
Shizuoka City, Naka Ward in Hamamatsu City, Numazu City,
Fuji City, and Susono City. Specifically, Aoi Ward, Suruga
Ward, and Naka Ward are typical city areas of relatively large,
medium, and small sizes, respectively. Similarly, Fuji city,
Numazu City, and Susono City are local areas of different
sizes. Table III summarizes the details of the six target areas.
Figure 2 illustrates OD graphs of the six target areas.

The ratio of training, validation, and test sets was 8:1:1. The
model was constructed using the PyTorch geometric library
[12]. Regarding the related hyperparameters, we set the em-
bedding dimensions to 128 and the number of hidden channels
to 256. We also implemented multi-head attention over graph
convolution to stabilize the learning process. Specifically, we
set the number of heads to four. Furthermore, we used the
Adam optimizer for training. The computation was accelerated
using a GPU. We conducted experiments on the Amazon
p2.xlarge instance with one NVIDIA K80 GPU, 4vCPUs, and
61 GiB of host memory.

C. Baseline Models

We compared our model with several baseline models. We
chose models ranging from traditional models to state-of-the-
art deep learning models.

The gravity model is a traditional model that considers static
grid indicators for mutual effects between the two areas [13].
Decision tree and random forest models are tree-based models
often used for regression problems. The gradient boosting
model is a traditional machine learning technique used for
regression tasks that uses an ensemble of several weak models
for better predictions. A naı̈ve multilayer perceptron model is a



Model Area
Aoi Award, Shizuoka City Suruga Ward, Shizuoka City Naka Ward, Hamamatsu City

RMSE MAE COR RMSE MAE COR RMSE MAE COR
Gravity Model 153.39 68.93 0.04 149.39 121.21 0.09 438.66 406.93 0.15
Decision Tree 191.15 50.84 0.13 146.51 50.38 0.15 184.83 65.30 0.29
Random Forest 137.74 42.45 0.09 109.05 43.22 0.13 128.31 59.28 0.22
Gradient Boosting 137.84 42.14 0.19 106.00 41.30 0.27 119.97 55.46 0.39
2-Layer MLP 146.61 58.39 0.15 128.67 93.27 0.15 127.74 63.88 0.23
GraphSAGE 75.31 22.23 0.48 99.44 33.62 0.35 75.30 21.82 0.47
SpatialGAT 67.34 21.40 0.64 79.18 22.95 0.58 91.64 35.33 0.72

Model Area
Numazu City Fuji City Susono City

RMSE MAE COR RMSE MAE COR RMSE MAE COR
Gravity Model 229.19 166.11 0.11 87.78 77.23 0.04 123.22 93.25 0.27
Decision Tree 189.47 49.07 0.11 86.56 29.18 0.08 148.91 46.87 0.06
Random Forest 106.88 40.31 0.09 57.27 21.93 0.12 97.45 39.03 0.20
Gradient Boosting 111.47 39.75 0.13 56.65 21.47 0.18 94.75 36.25 0.29
2-Layer MLP 113.69 52.21 0.22 75.49 56.95 0.11 99.02 56.22 0.28
GraphSAGE 50.65 22.00 0.38 50.59 22.97 0.39 88.15 30.12 0.39
SpatialGAT 108.80 24.45 0.48 45.26 14.31 0.58 69.53 25.89 0.62

TABLE I: Result of baseline models and the proposed model.

Feature Categories #Features Contents
Road Densities 24 Road number and density of

different widths for mesh in 2010
[8]

Facilities (POIs) 40 Number of facilities and
employees in different industrial

categories in 2016 [9]
Grid Population 1 Night population distribution in

2015 [10]
Railway Users 1 Number of annual railway station

users in 2019 [11]
Total 66

TABLE II: Grid indicators summary.

Name Area /km2 Population #Grids #OD Pairs
Aoi 1073.75 246221 366 17285

Suruga 73.06 211635 191 12570
Naka 44.34 234013 163 11906

Numazu 186.96 186169 280 16095
Fuji 244.95 242890 401 30824

Susono 138.12 49604 146 3375

TABLE III: Summary of target areas.

common approach for illustrating the complicated relationship
between features and targets. GraphSAGE is a spatial-based
graph learning model that is similar to GAT, but it treats all
neighbors under equal importance.

D. Evaluation Metrics

We measure performance of the regression problem with
the following metrics:

• Root Mean Squared Error (RMSE)

RMSE(ŷi, yi) =

√
ΣN

i=1(ŷi − yi)2

N
(7)

• Mean Average Error Ratio (MAE)

MAE(ŷi, yi) =
ΣN

i=1|ŷi − yi|
N

(8)

• Pearson Correlation Coefficient (COR)

COR(ŷi, yi) =
Σxy − ΣxΣy√

[Σx2 − (Σx)2][Σy2 − (Σy)2]
(9)

RMSE and MAE emphasize the individual mesh grid pre-
diction, whereas COR focuses on the overall prediction. We
depicted the performance more thoroughly using these three
metrics.

E. Result and Discussion

1) OD Volume Prediction: We conducted experiments us-
ing all baseline models and the proposed model. Table I
exhibits the results. Regarding all the metrics mentioned in
Section IV-D, our proposed model achieved the best perfor-
mance in almost all areas.

Traditional models, such as the gravity model, only consider
simple socioeconomic factors; thus, they are insensitive to
multimodal indicators and cannot simulate complicated inter-
actions between different OD pairs. Tree-based models can
predict accurate results in one-feature-to-one-target problems
while performing worse in problems like OD volume pre-
dictions. This is because such a problem is a pair-feature-
to-one problem, as one embedding needs to meet all related
OD pairs to provide an accurate prediction of OD volume,
which is much more difficult than the one-feature-to-one-target
one. GraphSAGE treats all neighbors the same; the model
may overlook some more essential neighbors but underscore
meaningless ones, rendering the prediction worse.
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(a) Target areas of Naka Ward, Hamamatsu City.
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(c) Similarity scores in the residence area of Numazu City.
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(d) Similarity scores in the station area of Numazu City.

Fig. 4: Mesh grid similarity analysis between Naka Ward, Hamamatsu City and Numazu City. We selected three typical mesh
grids of the rural (mesh grid one), residence (mesh grid two), and station area (mesh grid three) in Naka Ward. Then, we
calculated the cosine similarity of all grids in Numazu City. The similarity analysis shows that the generated embedding can
illustrate similarity between areas with similar functions and attributes.

2) Grid Similarity and Urban Utility Classification: Figure
4 shows the result between the target grid in Fuji City and
all grids in Naka Ward, Hamamatsu City. The target grid was
one grid near the largest train station in Fuji City. We can see
that grids near the train station show a higher similarity from
the heat map of Naka Ward in Figure 4, whereas grids in the
outskirts of the city show extremely low similarity.

Figure 4 shows the result between the target grids in Naka
Ward, Hamamatsu City, and all meshes in Numazu City. We
selected three target mesh grids in numerous types for analysis.
First, target mesh grid one was in the local area of Naka Ward.
In this area, there were nearly no tenant buildings, only several
factories. In the heat map of similarity in Numazu city in
Figure 4b, we can see those mesh grids on the border of the
city illustrate high similarity compared with the downtown
area. The most similar grids were near the mountain areas
without urban facilities, the same as Naka Ward. Second,

mesh grid two was in the residence area. This grid was in the
center of a residential block, and the road network was not
complicated around the mesh. The tenant areas in Numazu
City indicate the highest similarity from the result in Figure
4c. Furthermore, similar mesh grids are also more scattered, as
residence areas tend to disperse around the city. Third, mesh
grid three was a grid near the largest train station, Hamamatsu
station, in Naka Ward. We can see that grids near the train
station show a higher similarity from the heat map of Numazu
City in Figure 4d, whereas grids in the outskirts of the city
show extremely low similarity.

Note that this similarity analysis is a natural comparison
of generated embeddings. Further mining of the proposed
embeddings dealing with specific functions can be performed
using postprocessing.

Figure 5 shows the result of the land utility classification
in Aoi Ward, Shizuoka City. We applied the unsupervised k-
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Fig. 5: Land utility classification using unsupervised clustering
in Aoi Ward, Shizuoka City. The classification is extremely
accurate for the differentiation between rural and downtown
areas.

means clustering method to the generated embeddings of Aoi
Ward. Specifically, we chose the number of classes as seven.
The result implies that the generated embeddings naturally
own the semantics for the land utility. The classification is
accurate for the differentiation between rural and downtown
areas. However, it cannot perform well in the central city,
where the land utility is complicated. Note that we apply the
naı̈ve unsupervised clustering approach to uncover the mesh
grid representations. The application of other supervised meth-
ods to our proposed embeddings can give better predictions in
populated areas.

3) Indicator Importance Analysis: Understanding which
indicator plays a more important role is necessary because
the model utilizes multimodal urban indicators. Therefore,
we conducted an indicator importance analysis in this study.
Specifically, we measured the gradient change of all indicators,
given the same initial value. The greater the gradient changes
concerning the initial unit value, the more sensitive the model
is to the urban indicator. We used the integrated gradients algo-
rithm to calculate the significance of each urban indicator. The
algorithm used sensitivity and implementation invariance as
two fundamental axioms to approximate the feature attribution
[14]. We conducted the analysis using the Captum library [15].
The result can be seen in Figure 6. Note that we normalized the
indicator importance between zero and one to better display
the result.

The road density in the mesh grid dominated the feature
contribution. Such outcomes were reasonable, as the traffic
conditions influence the OD flow directly. The vehicle is one
of the most essential means of transportation in areas except
super cities like Tokyo in Japan. Additionally, roads with
widths between 3 to 13m illustrated considerable importance.
Such road networks are the most common urban arterial roads,
which assume the responsibility for the large amounts of the

city traffic volumes. The wider roads, such as highways, and
the narrower roads, such as branch lanes, are of relatively less
importance but are still exigent.

In both six cities, the night population contributed to the
OD volume calculation, which met the common knowledge.
The populated areas should have greater traffic flows because
the people are the source of the OD flow. Nonetheless, the POI
distribution signal indicated a relatively small attribution to the
proposed result. The reason may be that the classification of
municipal facilities cannot differentiate the purpose of travel.
The number of POI can influence the destination choice of
people only in several downtown areas.

The signal of railway users had a different effect in each
region. We can determine that the railway indicator performs
clearly in Aoi Ward, Numazu City, and Fuji City, whereas the
impact can be neglected in other areas. Most railway users are
from passing traffic instead of the intra-city flow. One instance
is Naka Ward, as Hamamatsu station is a middle station in
Tokaido-Sanyo Shinkansen, one of the busiest Japanese high-
speed rail lines. Even though it has many railway users, the
traffic has nothing to do with the OD flow within the region.
The neglectable effect in local areas like Susono City can be
explained by the primitive local railway system.

4) Discussion: To a certain extent, the graph convolution
model can elaborate on the interdependence between mul-
timodal features and intrigue latent correlation to generate
reasonable embeddings. We introduced the notion of grid
representation and used a graph structure to capture spatial
patterns. Large amounts of temporal data will not suffice to
highlight the key attributes of the OD flows. Furthermore, we
developed an urban analysis and studied the latent character-
istic of the cities. It is also imperative to distinguish between
entities with different identities.

V. RELATED WORK

This section presents a literature review of OD matrix
prediction and the corresponding techniques. The OD matrix
is a significant indicator of human mobility conditions, which
grasps the overall trend of people flow. Addressing a com-
plicated urban system with several unpredictable variables is
challenging. This section describes the state-of-the-art methods
that utilize a deep learning model to predict the OD matrix.

A. OD Flow Prediction

A city is a complicated and dynamic system that is difficult
to simulate. The OD flow matrix is a key signal to illustrate
city-wide people movement, while predicting human mobility
is a high-dimensional and multimodal problem [16]. OD
volume prediction over a large spatial scale is difficult owing
to the complex mutual relationships because the number of
possible OD pairs is quadratic to the number of grids.

General OD matrices contain volumes from multiple means
of transportation, which makes them considerably more chal-
lenging to predict. Previous studies have often used taxi tra-
jectories [17] or subway user history datasets [18] to construct
OD tensors. However, the coverage of such data is limited, and
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Fig. 6: Analysis of importance for urban indicators in six target areas. The road density in the mesh grid dominated the feature
contribution, whereas other signals had different attributions to the generated OD flow volumes.

sparsity may render them useless. Additionally, the dimension
of the OD matrix, which is the total number of grids in the
analysis, is not large. Thus, this method may not be suitable
for large-scale predictions.

Furthermore, many prior studies have focused on spatiotem-
poral OD matrix predictions [19] [20]. However, we consider
all citywide trips rather than those only from taxis or subways,
which include multiple transportation modes. The problem
setting is similar to that in [21]. This type of data is easier to
access and does not cause privacy concerns. Nonetheless, we
focus on the overall potential features of movement patterns.
[21] implemented multitask learning for commuting flows.
They considered the volume of the OD pair and the total
inflow and outflow for each node. Moreover, the study used
two GAT layers to consider inflow and outflow separately.
However, such a division may neglect the interaction between
the origin and destination semantics.

B. Location Representation Learning

Location embedding is a popular topic in the academic
domain. The goal is to encode locations such that the similarity
measured in the embedding space approximates that in the
original world [22]. Specifically, we can use dense vectors in
the low dimension to describe places [23]. On the one hand,
distributed representation resolves the sparse matrix problems
that lead to the expensive computation of features. On the
other hand, location representation learning alleviates the need
for feature engineering every time. With embedding learning,
there is no need to perform labor-intensive feature engineering
for every application because the model automatically learns
the feature distribution.

Location-representation learning is important and efficient
for urban computing-related problems. The prediction heads
differ from each other as an urban system has many different
components. If the location representations, which contain
considerable information from different data, are prepared,
the task can utilize such pre-trained embeddings and place
them into diversified downstream tasks to make improved
predictions.

C. Graph Convolutional Network

Graph convolutional network (GCN) is a powerful technique
to handle diversified data structures with an arbitrary shape
other than sequences and grids. It can capture the explicit
or implicit topographical information through the message
passing procedure, in which the central node will aggregate
information from its neighbor nodes. Some networks, such as
GCN, are spectral-based. They operate on the whole adjacent
matrix. In contrast, networks like GAT [24] and GraphSAGE
[25] are spatial-based, which can form computation graphs
without considering the whole structure all the time. Further-
more, networks like GAT have a fixed number of parameters,
irrespective of the graph size. Thus, it is suitable for graphs
of different sizes.

The neighborhood aggregation function, which is a shared
edge-wise mechanism and is independent of the global graph
adjacency matrix, is to be learned by the network. It enables
inductive learning, i.e., the network can easily consider unseen
nodes or graphs and can generate new embeddings on the fly
for generalization, which is broadly applicable. The attention
mechanism has been at the leading edge for sequence-based
deep learning tasks. It enables the network to focus on the



most relevant section of inputs to make the decision. It can also
benefit graph-structured data through the usage of GAT. The
model can take advantage of relational structures and handle
dynamic node features in GAT as the central node attends to
each neighbor node in the network.

Recent studies have shown that utilizing graph learning for
data with spatial and temporal attributes is possible. Human
mobility maintains the graph-related attributes. Consequently,
the graph neural network (GNN) is an efficient method for un-
raveling complicated graph structures. GNN-based approaches
are commonly used in traffic speed forecasting because road
links and traffic monitors can be seen as edges and nodes
in the graph. Additionally, several studies consider estimated
time of arrival. They view road segments as nodes and the
connectivity between road segments as edges.

VI. CONCLUSION

We derived a spatially weighted GAT for OD volume
prediction. The results illustrate that our proposed model
can capture the major patterns of daily OD flow, and the
results can be utilized in other downstream tasks. Complicated
feature distributions can be extracted by explicitly modeling
the relationship.

The government can easily apply our proposed model in
other cities, as our model owns the inductive characteristics.
All the necessary urban indicators are from open-source data,
and the generated OD volumes are valuable. Furthermore, the
by-product grid embeddings contain considerable meaningful
information, which is suitable for diversified urban down-
stream tasks. Such usage can avoid multiple inclusion of the
same data in the urban analysis, which is advantageous for
efficiency and limited budgets.

In future studies, we intend to improve the inductive capac-
ity of the model to enable few-shot learning in other cities.
We will also measure other factors that affect human mobility
and clarify the heterogeneous mutual effects.
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